Baily–Borel compactifications of period images and the b-semiampleness conjecture

B. Bakker with S. Filipazzi, M. Mauri, and J. Tsimerman

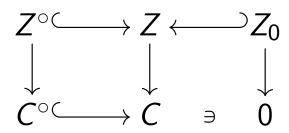
BGS September 26, 2025

(1) (Satake '56)
$$A_g^{\text{SBB}} = A_g \sqcup A_{g-1} \sqcup \cdots \sqcup A_1 \sqcup A_0$$
.

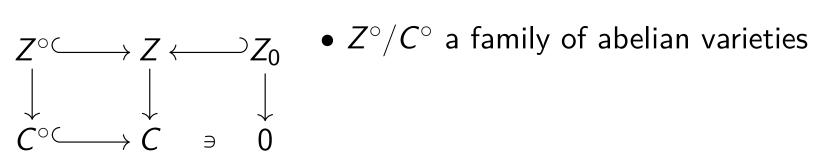
- (1) (Satake '56) $A_g^{\text{SBB}} = A_g \sqcup A_{g-1} \sqcup \cdots \sqcup A_1 \sqcup A_0$.
- (2) (Baily '58) $A_g^{SBB} = Proj(graded ring of automorphic forms)$.

- (1) (Satake '56) $A_g^{\text{SBB}} = A_g \sqcup A_{g-1} \sqcup \cdots \sqcup A_1 \sqcup A_0$.
- (2) (Baily '58) $A_g^{SBB} = Proj(graded ring of automorphic forms)$.
- (3) modular interpretation.

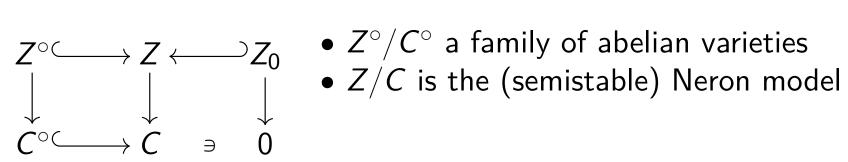
- (1) (Satake '56) $A_g^{\text{SBB}} = A_g \sqcup A_{g-1} \sqcup \cdots \sqcup A_1 \sqcup A_0$.
- (2) (Baily '58) $A_g^{SBB} = Proj(graded ring of automorphic forms)$.
- (3) modular interpretation.



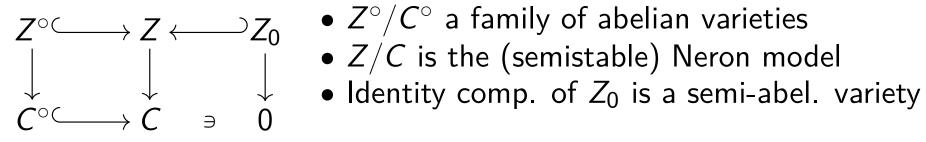
- (1) (Satake '56) $A_{g}^{\mathrm{SBB}} = A_{g} \sqcup A_{g-1} \sqcup \cdots \sqcup A_{1} \sqcup A_{0}$.
- (2) (Baily '58) $A_{\sigma}^{\text{SBB}} = \text{Proj}(\text{graded ring of automorphic forms}).$
- (3) modular interpretation.



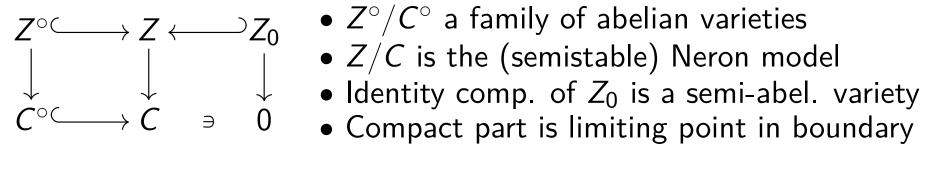
- (1) (Satake '56) $A_{\varphi}^{\mathrm{SBB}} = A_{g} \sqcup A_{g-1} \sqcup \cdots \sqcup A_{1} \sqcup A_{0}$.
- (2) (Baily '58) $A_{\sigma}^{\text{SBB}} = \text{Proj}(\text{graded ring of automorphic forms}).$
- (3) modular interpretation.



- (1) (Satake '56) $A_{g}^{\mathrm{SBB}} = A_{g} \sqcup A_{g-1} \sqcup \cdots \sqcup A_{1} \sqcup A_{0}$.
- (2) (Baily '58) $A_{\sigma}^{\text{SBB}} = \text{Proj}(\text{graded ring of automorphic forms}).$
- (3) modular interpretation.

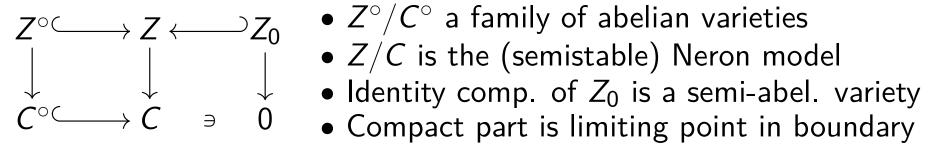


- (1) (Satake '56) $A_{g}^{\mathrm{SBB}} = A_{g} \sqcup A_{g-1} \sqcup \cdots \sqcup A_{1} \sqcup A_{0}$.
- (2) (Baily '58) $A_{\sigma}^{\text{SBB}} = \text{Proj}(\text{graded ring of automorphic forms}).$
- (3) modular interpretation.



- Z°/C° a family of abelian varieties

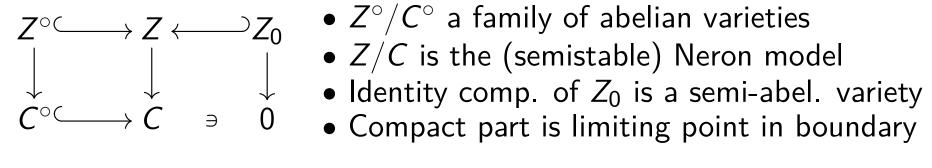
- (1) (Satake '56) $A_{g}^{\mathrm{SBB}} = A_{g} \sqcup A_{g-1} \sqcup \cdots \sqcup A_{1} \sqcup A_{0}$.
- (2) (Baily '58) $A_{\sigma}^{\text{SBB}} = \text{Proj}(\text{graded ring of automorphic forms}).$
- (3) modular interpretation.



- Z°/C° a family of abelian varieties

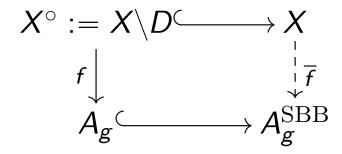
- (4) natural polarization. $\pi: Z \to \mathcal{A}_g$ the universal family,

- (1) (Satake '56) $A_{g}^{\mathrm{SBB}} = A_{g} \sqcup A_{g-1} \sqcup \cdots \sqcup A_{1} \sqcup A_{0}$.
- (2) (Baily '58) $A_{\sigma}^{\text{SBB}} = \text{Proj}(\text{graded ring of automorphic forms}).$
- (3) modular interpretation.



- Z°/C° a family of abelian varieties

- (4) natural polarization. $\pi: Z \to \mathcal{A}_g$ the universal family, $L=\det\pi_*\Omega_{Z/\mathcal{A}_{\sigma}}$ extends to an ample bundle $L_{\mathcal{A}_{\sigma}^{\mathrm{SBB}}}$ (up to a power).



$$X^{\circ} := X \setminus D \hookrightarrow X$$

$$\downarrow f \qquad \qquad \downarrow \overline{f}$$

$$A_{g} \hookrightarrow A_{g}^{\operatorname{SBB}}$$
 $A_{g} \hookrightarrow A_{g}^{\operatorname{SBB}}$
 $\bullet (X, D) \log \operatorname{smooth}$

$$X^{\circ} := X \setminus D^{\subset} \longrightarrow X$$

$$\downarrow_{\overline{f}} \qquad \qquad \bullet (X, D) \text{ log smooth}$$

$$A_{g}^{\circ} \longrightarrow A_{g}^{\operatorname{SBB}} \qquad \bullet \overline{f}^{*} L_{A_{g}^{\operatorname{SBB}}} \cong L_{X}$$

(5) universality. (Borel '72)

$$X^{\circ} := X \setminus D^{\subset} \longrightarrow X$$

$$\downarrow f \qquad \qquad \downarrow \overline{f}$$

$$A_{g}^{\circ} \longrightarrow A_{g}^{\operatorname{SBB}}$$
 $\bullet (X, D) \text{ log smooth}$

$$\bullet \overline{f}^{*} L_{A_{g}^{\operatorname{SBB}}} \cong L_{X}$$

(5') Even have (5) in the analytic category, i.e. $(X, D) = (\Delta^k, \text{coordinate hyperplanes})$

(5) universality. (Borel '72)

$$X^{\circ} := X \setminus D^{\subset} \longrightarrow X$$

$$\downarrow f \qquad \qquad \downarrow \overline{f}$$

$$A_{g}^{\circ} \longrightarrow A_{g}^{\operatorname{SBB}}$$
 $\downarrow \overline{f}$

$$\downarrow \overline{f}$$

$$\downarrow$$

(5') Even have (5) in the analytic category, i.e. $(X, D) = (\Delta^k, \text{coordinate hyperplanes})$

(Satake '60, Baily–Borel '66) Generalized to arbitrary arithmetic locally symmetric varieties.

Let (X, D) log smooth proper

Let (X, D) log smooth proper

 $\pi: Z^{\circ} \to X^{\circ}$ be a smooth projective family,

Let (X, D) log smooth proper

 $\pi:Z^{\circ}\to X^{\circ}$ be a smooth projective family,

 $V=R^k\pi_*\mathbb{Z}_{(Z^\circ)^{\mathrm{an}}}$ equipped with its polarizable $\mathbb{Z} ext{-VHS}$

Let (X, D) log smooth proper

 $\pi:Z^{\circ}\to X^{\circ}$ be a smooth projective family,

 $V = R^k \pi_* \mathbb{Z}_{(Z^{\circ})^{\mathrm{an}}}$ equipped with its polarizable \mathbb{Z} -VHS (filtration $F^{\bullet}V$ on $\mathcal{O}_{X^{\mathrm{an}}} \otimes_{\mathbb{C}_{X^{\mathrm{an}}}} V$).

Let (X, D) log smooth proper

 $\pi: Z^{\circ} \to X^{\circ}$ be a smooth projective family,

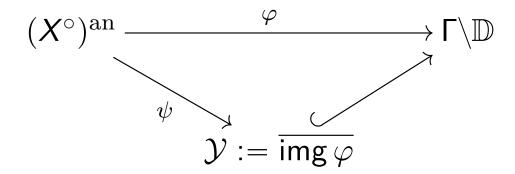
 $V = R^k \pi_* \mathbb{Z}_{(Z^{\circ})^{\mathrm{an}}}$ equipped with its polarizable \mathbb{Z} -VHS (filtration $F^{\bullet}V$ on $\mathcal{O}_{X^{\mathrm{an}}} \otimes_{\mathbb{C}_{X^{\mathrm{an}}}} V$).

$$(X^{\circ})^{\mathrm{an}} \longrightarrow \Gamma \backslash \mathbb{D}$$

Let (X, D) log smooth proper

 $\pi:Z^{\circ}\to X^{\circ}$ be a smooth projective family,

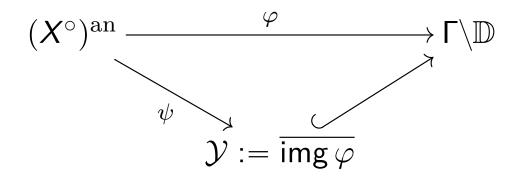
 $V=R^k\pi_*\mathbb{Z}_{(Z^\circ)^{\mathrm{an}}}$ equipped with its polarizable \mathbb{Z} -VHS (filtration $F^\bullet V$ on $\mathcal{O}_{X^{\mathrm{an}}}\otimes_{\mathbb{C}_{X^{\mathrm{an}}}}V$).



Let (X, D) log smooth proper

 $\pi:Z^{\circ}\to X^{\circ}$ be a smooth projective family,

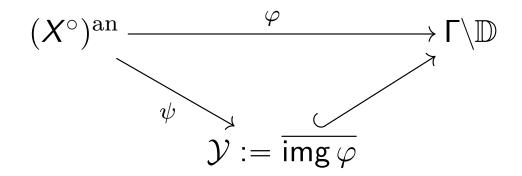
 $V=R^k\pi_*\mathbb{Z}_{(Z^\circ)^{\mathrm{an}}}$ equipped with its polarizable \mathbb{Z} -VHS (filtration $F^\bullet V$ on $\mathcal{O}_{X^{\mathrm{an}}}\otimes_{\mathbb{C}_{X^{\mathrm{an}}}}V$).



Let (X, D) log smooth proper

 $\pi:Z^{\circ}\to X^{\circ}$ be a smooth projective family,

 $V=R^k\pi_*\mathbb{Z}_{(Z^\circ)^{\mathrm{an}}}$ equipped with its polarizable \mathbb{Z} -VHS (filtration $F^\bullet V$ on $\mathcal{O}_{X^{\mathrm{an}}}\otimes_{\mathbb{C}_{X^{\mathrm{an}}}}V$).



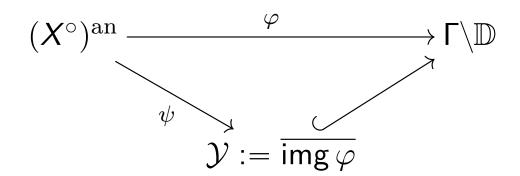
Question (Griffiths '70).

(A) Is \mathcal{Y} algebraic?

Let (X, D) log smooth proper

 $\pi:Z^{\circ}\to X^{\circ}$ be a smooth projective family,

 $V=R^k\pi_*\mathbb{Z}_{(Z^\circ)^{\mathrm{an}}}$ equipped with its polarizable \mathbb{Z} -VHS (filtration $F^\bullet V$ on $\mathcal{O}_{X^{\mathrm{an}}}\otimes_{\mathbb{C}_{X^{\mathrm{an}}}}V$).

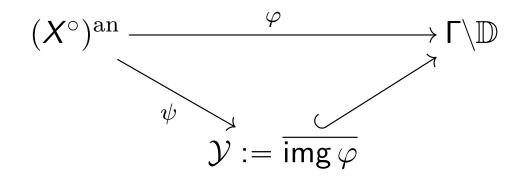


- (A) Is \mathcal{Y} algebraic?
- (B) Is Griffiths bundle $L_{\mathcal{Y}} := \bigotimes_{p} \det F^{p} V$ algebraic?

Let (X, D) log smooth proper

 $\pi:Z^{\circ}\to X^{\circ}$ be a smooth projective family,

 $V=R^k\pi_*\mathbb{Z}_{(Z^\circ)^{\mathrm{an}}}$ equipped with its polarizable \mathbb{Z} -VHS (filtration $F^\bullet V$ on $\mathcal{O}_{X^{\mathrm{an}}}\otimes_{\mathbb{C}_{X^{\mathrm{an}}}}V$).

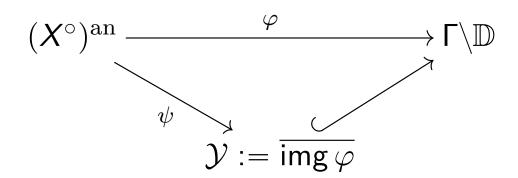


- (A) Is \mathcal{Y} algebraic?
- (B) Is Griffiths bundle $L_{\mathcal{Y}} := \bigotimes_{p} \det F^{p}V$ algebraic? Ample?

Let (X, D) log smooth proper

 $\pi:Z^{\circ}\to X^{\circ}$ be a smooth projective family,

 $V=R^k\pi_*\mathbb{Z}_{(Z^\circ)^{\mathrm{an}}}$ equipped with its polarizable \mathbb{Z} -VHS (filtration $F^\bullet V$ on $\mathcal{O}_{X^{\mathrm{an}}}\otimes_{\mathbb{C}_{X^{\mathrm{an}}}}V$).



- (A) Is \mathcal{Y} algebraic?
- (B) Is Griffiths bundle $L_{\mathcal{Y}} := \bigotimes_{p} \det F^{p}V$ algebraic? Ample?
- (C) Is there a $\mathcal{Y}^{\mathrm{BB}}$?

- (A) Is \mathcal{Y} algebraic?
- (B) Is $L_{\mathcal{Y}} := \bigotimes_{p} \det F^{p}V$ algebraic? Ample?

Question (Griffiths '70).

- (A) Is \mathcal{Y} algebraic?
- (B) Is $L_{\mathcal{Y}} := \bigotimes_{p} \det F^{p}V$ algebraic? Ample?

Theorem (B-Brunebarbe-Tsimerman '23)

$$\left((X^\circ)^{\mathrm{an}} \xrightarrow{\psi} \mathcal{Y}\right) = \left(X^\circ \xrightarrow{f} Y\right)^{\mathrm{an}}$$
 and $L_{\mathcal{Y}} = (L_Y)^{\mathrm{an}}$ all algebraic, L_Y ample.

Question (Griffiths '70).

- (A) Is \mathcal{Y} algebraic?
- (B) Is $L_{\mathcal{Y}} := \bigotimes_{p} \det F^{p}V$ algebraic? Ample?

Theorem (B-Brunebarbe-Tsimerman '23)

$$\left((X^\circ)^{\mathrm{an}} \xrightarrow{\psi} \mathcal{Y}\right) = \left(X^\circ \xrightarrow{f} Y\right)^{\mathrm{an}}$$
 and $L_{\mathcal{Y}} = (L_Y)^{\mathrm{an}}$ all algebraic, L_Y ample.

(C) Is there a $\mathcal{Y}^{\mathrm{BB}}$?

Question (Griffiths '70).

- (A) Is \mathcal{Y} algebraic?
- (B) Is $L_{\mathcal{Y}} := \bigotimes_{p} \det F^{p}V$ algebraic? Ample?

Theorem (B-Brunebarbe-Tsimerman '23)

$$\left((X^\circ)^{\mathrm{an}} \xrightarrow{\psi} \mathcal{Y}\right) = \left(X^\circ \xrightarrow{f} Y\right)^{\mathrm{an}}$$
 and $L_{\mathcal{Y}} = (L_Y)^{\mathrm{an}}$ all algebraic, L_Y ample.

(C) Is there a $\mathcal{Y}^{\mathrm{BB}}$?

Theorem 1 (B–Filipazzi–Mauri–Tsimerman)

- $B_Y := \bigoplus_k H^0_{mg}(Y, L_Y^k)$ is finitely generated.
- $Y^{\mathrm{BB}} := \mathrm{Proj}\,B_Y$ is projective compactification of Y to which L_Y extends amply and universally, as in (5) (even (5')).

Theorem 1 (B-Filipazzi-Mauri-Tsimerman)

- $B_Y := \bigoplus_k H^0_{mg}(Y, L^k_Y)$ is finitely generated.
- $Y^{\mathrm{BB}} := \mathrm{Proj}\,B_Y$ is projective compactification of Y to which L_Y extends amply and universally, as in (5) (even (5')).

Remarks

Theorem 1 (B–Filipazzi–Mauri–Tsimerman)

- $B_Y := \bigoplus_k H^0_{mg}(Y, L^k_Y)$ is finitely generated.
- $Y^{BB} := \text{Proj } B_Y$ is projective compactification of Y to which L_Y extends amply and universally, as in (5) (even (5')).

Remarks

• In particular, for a proper log smooth (X, D) with a polarizable \mathbb{Z} -VHS, $L_X = \bigotimes_p \det F^p V$ is semiample.

Theorem 1 (B-Filipazzi-Mauri-Tsimerman)

- $B_Y := \bigoplus_k H^0_{mg}(Y, L^k_Y)$ is finitely generated.
- $Y^{\mathrm{BB}} := \mathrm{Proj}\,B_Y$ is projective compactification of Y to which L_Y extends amply and universally, as in (5) (even (5')).

Remarks

- In particular, for a proper log smooth (X, D) with a polarizable \mathbb{Z} -VHS, $L_X = \bigotimes_p \det F^p V$ is semiample.
- ullet Y^{BB} is stratified by subvarieties with quasifinite period maps—the ones associated to the associated graded of the limit mixed Hodge structures.

Theorem 1 (B–Filipazzi–Mauri–Tsimerman)

- $B_Y := \bigoplus_k H^0_{mg}(Y, L^k_Y)$ is finitely generated.
- $Y^{\mathrm{BB}} := \mathrm{Proj}\,B_Y$ is projective compactification of Y to which L_Y extends amply and universally, as in (5) (even (5')).

Remarks

- In particular, for a proper log smooth (X, D) with a polarizable \mathbb{Z} -VHS, $L_X = \bigotimes_p \det F^p V$ is semiample.
- ullet Y^{BB} is stratified by subvarieties with quasifinite period maps—the ones associated to the associated graded of the limit mixed Hodge structures.
- Lots of previous work of Green-Griffiths-Laza-Robles and Green-Griffiths-Robles, including some special cases.
 Green-Griffiths-Robles establish key ingredient of our proof.

Let $(W, F^{\bullet}W)$ on X° be a polarizable \mathbb{Z} -VHS whose deepest $F^{p}W$ is a line bundle, called the *Hodge bundle* $M_{X^{\circ}}$.

Let $(W, F^{\bullet}W)$ on X° be a polarizable \mathbb{Z} -VHS whose deepest $F^{p}W$ is a line bundle, called the *Hodge bundle* $M_{X^{\circ}}$. We say $(W, F^{\bullet}W)$ is a CY \mathbb{Z} -VHS.

Let $(W, F^{\bullet}W)$ on X° be a polarizable \mathbb{Z} -VHS whose deepest $F^{p}W$ is a line bundle, called the *Hodge bundle* $M_{X^{\circ}}$. We say $(W, F^{\bullet}W)$ is a CY \mathbb{Z} -VHS.

Example. If $\pi: Z^{\circ} \to X^{\circ}$ a smooth projective family of Calabi–Yau m-folds, $W = R^m \pi_* \mathbb{Z}_{(Z^{\circ})^{\mathrm{an}}}$.

Let $(W, F^{\bullet}W)$ on X° be a polarizable \mathbb{Z} -VHS whose deepest $F^{p}W$ is a line bundle, called the *Hodge bundle* $M_{X^{\circ}}$. We say $(W, F^{\bullet}W)$ is a CY \mathbb{Z} -VHS.

Example. If $\pi: Z^{\circ} \to X^{\circ}$ a smooth projective family of Calabi–Yau m-folds, $W = R^m \pi_* \mathbb{Z}_{(Z^{\circ})^{\mathrm{an}}}$. Then $M_{X^{\circ}} = \pi_* \omega_{Z^{\circ}/X^{\circ}}$.

Let $(W, F^{\bullet}W)$ on X° be a polarizable \mathbb{Z} -VHS whose deepest $F^{p}W$ is a line bundle, called the *Hodge bundle* $M_{X^{\circ}}$. We say $(W, F^{\bullet}W)$ is a CY \mathbb{Z} -VHS.

Example. If $\pi: Z^{\circ} \to X^{\circ}$ a smooth projective family of Calabi–Yau m-folds, $W = R^m \pi_* \mathbb{Z}_{(Z^{\circ})^{\mathrm{an}}}$. Then $M_{X^{\circ}} = \pi_* \omega_{Z^{\circ}/X^{\circ}}$.

Question. Is M_X semiample for abstract CY \mathbb{Z} -VHS?

Let $(W, F^{\bullet}W)$ on X° be a polarizable \mathbb{Z} -VHS whose deepest $F^{p}W$ is a line bundle, called the *Hodge bundle* $M_{X^{\circ}}$. We say $(W, F^{\bullet}W)$ is a CY \mathbb{Z} -VHS.

Example. If $\pi: Z^{\circ} \to X^{\circ}$ a smooth projective family of Calabi–Yau m-folds, $W = R^m \pi_* \mathbb{Z}_{(Z^{\circ})^{\mathrm{an}}}$. Then $M_{X^{\circ}} = \pi_* \omega_{Z^{\circ}/X^{\circ}}$.

Question. Is M_X semiample for abstract CY \mathbb{Z} -VHS?

Not always!

Let $(W, F^{\bullet}W)$ on X° be a polarizable \mathbb{Z} -VHS whose deepest $F^{p}W$ is a line bundle, called the *Hodge bundle* $M_{X^{\circ}}$. We say $(W, F^{\bullet}W)$ is a CY \mathbb{Z} -VHS.

Example. If $\pi: Z^{\circ} \to X^{\circ}$ a smooth projective family of Calabi–Yau m-folds, $W = R^m \pi_* \mathbb{Z}_{(Z^{\circ})^{\mathrm{an}}}$. Then $M_{X^{\circ}} = \pi_* \omega_{Z^{\circ}/X^{\circ}}$.

Question. Is M_X semiample for abstract CY \mathbb{Z} -VHS?

Not always!

But sometimes!

Let $(W, F^{\bullet}W)$ on X° be a polarizable \mathbb{Z} -VHS whose deepest $F^{p}W$ is a line bundle, called the *Hodge bundle* $M_{X^{\circ}}$. We say $(W, F^{\bullet}W)$ is a CY \mathbb{Z} -VHS.

Example. If $\pi: Z^{\circ} \to X^{\circ}$ a smooth projective family of Calabi–Yau m-folds, $W = R^m \pi_* \mathbb{Z}_{(Z^{\circ})^{\mathrm{an}}}$. Then $M_{X^{\circ}} = \pi_* \omega_{Z^{\circ}/X^{\circ}}$.

Question. Is M_X semiample for abstract CY \mathbb{Z} -VHS?

Not always!

But sometimes! In fact, for any polarizable \mathbb{Z} -VHS $(V, F^{\bullet}V)$, we may form

$$\operatorname{Griff}(V) := \bigotimes_{p} \bigwedge^{\operatorname{rk} F^{p}} V$$

Let $(W, F^{\bullet}W)$ on X° be a polarizable \mathbb{Z} -VHS whose deepest $F^{p}W$ is a line bundle, called the *Hodge bundle* $M_{X^{\circ}}$. We say $(W, F^{\bullet}W)$ is a CY \mathbb{Z} -VHS.

Example. If $\pi: Z^{\circ} \to X^{\circ}$ a smooth projective family of Calabi–Yau m-folds, $W = R^m \pi_* \mathbb{Z}_{(Z^{\circ})^{\mathrm{an}}}$. Then $M_{X^{\circ}} = \pi_* \omega_{Z^{\circ}/X^{\circ}}$.

Question. Is M_X semiample for abstract CY \mathbb{Z} -VHS?

Not always!

But sometimes! In fact, for any polarizable \mathbb{Z} -VHS $(V, F^{\bullet}V)$, we may form

$$\operatorname{Griff}(V) := \bigotimes_{p} \bigwedge^{\operatorname{rk} F^{p}} V$$

This is a polarizable \mathbb{Z} -VHS whose Hodge bundle is the Griffiths bundle of V.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

Let (X, D) be a proper log smooth algebraic space and $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° .

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

Let (X, D) be a proper log smooth algebraic space and $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is **integrable** and **has torsion combinatorial monodromy**.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

Let (X, D) be a proper log smooth algebraic space and $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is **integrable** and **has torsion combinatorial monodromy**. Then M_X is semiample.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

Let (X, D) be a proper log smooth algebraic space and $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is **integrable** and **has torsion combinatorial monodromy**. Then M_X is semiample.

Integrability.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

Let (X, D) be a proper log smooth algebraic space and $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is **integrable** and **has torsion combinatorial monodromy**. Then M_X is semiample.

Integrability. If period map of M_X is not generically immersive on some subvariety, then the period map of the \mathbb{Q} -closure is not generically immersive.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

Let (X, D) be a proper log smooth algebraic space and $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is **integrable** and **has torsion combinatorial monodromy**. Then M_X is semiample.

Integrability. If period map of M_X is not generically immersive on some subvariety, then the period map of the \mathbb{Q} -closure is not generically immersive.

Automatic for the Griffiths bundle

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

Let (X, D) be a proper log smooth algebraic space and $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is **integrable** and **has torsion combinatorial monodromy**. Then M_X is semiample.

Integrability. If period map of M_X is not generically immersive on some subvariety, then the period map of the \mathbb{Q} -closure is not generically immersive.

Automatic for the Griffiths bundle

Torsion combinatorial monodromy.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

Let (X, D) be a proper log smooth algebraic space and $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is **integrable** and **has torsion combinatorial monodromy**. Then M_X is semiample.

Integrability. If period map of M_X is not generically immersive on some subvariety, then the period map of the \mathbb{Q} -closure is not generically immersive.

Automatic for the Griffiths bundle

Torsion combinatorial monodromy. If M_X is numerically trivial on a connected curve, it is torsion.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

Let (X, D) be a proper log smooth algebraic space and $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is **integrable** and **has torsion combinatorial monodromy**. Then M_X is semiample.

Integrability. If period map of M_X is not generically immersive on some subvariety, then the period map of the \mathbb{Q} -closure is not generically immersive.

Automatic for the Griffiths bundle

Torsion combinatorial monodromy. If M_X is numerically trivial on a connected curve, it is torsion.

Theorem (Green–Griffiths–Robles)

The Griffiths bundle has torsion combinatorial monodromy.

Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs.

Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs. Then the Hodge bundle is integrable and has torsion combinatorial monodromy.

Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs. Then the Hodge bundle is integrable and has torsion combinatorial monodromy.

For (Z, Δ) an lc pair and $\pi: Z \to X$ a fibration with $K_Z + \Delta \sim_{\pi} 0$,

Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs. Then the Hodge bundle is integrable and has torsion combinatorial monodromy.

For (Z, Δ) an Ic pair and $\pi: Z \to X$ a fibration with $K_Z + \Delta \sim_{\pi} 0$, then

 $K_Z + \Delta \sim \pi^* (K_X + B_X + M_X)$ (Kodaira, Kawamata, Fujino, Mori, Kollár,...)

Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs. Then the Hodge bundle is integrable and has torsion combinatorial monodromy.

For (Z, Δ) an Ic pair and $\pi: Z \to X$ a fibration with $K_Z + \Delta \sim_{\pi} 0$, then

 $K_Z + \Delta \sim \pi^* (K_X + B_X + M_X)$ (Kodaira, Kawamata, Fujino, Mori, Kollár,...)

Corollary (b-semiampleness conjecture of Prokhorov–Shokurov)

 M_X is b-semiample.

Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs. Then the Hodge bundle is integrable and has torsion combinatorial monodromy.

For (Z, Δ) an Ic pair and $\pi: Z \to X$ a fibration with $K_Z + \Delta \sim_{\pi} 0$, then

 $K_Z + \Delta \sim \pi^* (K_X + B_X + M_X)$ (Kodaira, Kawamata, Fujino, Mori, Kollár,...)

Corollary (b-semiampleness conjecture of Prokhorov–Shokurov)

 M_X is b-semiample.

Partial past results of Ambro, Lazić, Floris,...

Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs. Then the Hodge bundle is integrable and has torsion combinatorial monodromy.

For (Z, Δ) an Ic pair and $\pi: Z \to X$ a fibration with $K_Z + \Delta \sim_{\pi} 0$, then

 $K_Z + \Delta \sim \pi^* (K_X + B_X + M_X)$ (Kodaira, Kawamata, Fujino, Mori, Kollár,...)

Corollary (b-semiampleness conjecture of Prokhorov–Shokurov)

 M_X is b-semiample.

Partial past results of Ambro, Lazić, Floris,...

Corollary

Moduli stacks of polarized klt CY pairs have canonical Baily-Borel compactifications, up to taking coarse space, reduction, normalization.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let R be the equivalence relation on X of being connected by chains of M_X -degree zero curves.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let R be the equivalence relation on X of being connected by chains of M_X -degree zero curves.

Lemma

R is a proper algebraic equivalence relation.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let R be the equivalence relation on X of being connected by chains of M_X -degree zero curves.

Lemma

R is a proper algebraic equivalence relation. In particular, Y = X/R exists as a reasonable topological space.

Thm 2, Step 1: make the topological space

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let R be the equivalence relation on X of being connected by chains of M_X -degree zero curves.

Lemma

R is a proper algebraic equivalence relation. In particular, Y = X/R exists as a reasonable topological space.

Moreover, natural stratification of (X, D) descends to Y—that is, Y has a stratification s.t. inverse images of strata Y_S are unions X_S of strata of X.

Thm 2, Step 1: make the topological space

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let R be the equivalence relation on X of being connected by chains of M_X -degree zero curves.

Lemma

R is a proper algebraic equivalence relation. In particular, Y = X/R exists as a reasonable topological space.

Moreover, natural stratification of (X, D) descends to Y—that is, Y has a stratification s.t. inverse images of strata Y_S are unions X_S of strata of X.

Key: By BBT, **each stratum** Y_S is algebraic and M_X descends amply.

Thm 2, Step 1: make the topological space

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let R be the equivalence relation on X of being connected by chains of M_X -degree zero curves.

Lemma

R is a proper algebraic equivalence relation. In particular, Y = X/R exists as a reasonable topological space.

Moreover, natural stratification of (X, D) descends to Y—that is, Y has a stratification s.t. inverse images of strata Y_S are unions X_S of strata of X.

Key: By BBT, **each stratum** Y_S is algebraic and M_X descends amply. Here we use (*) + (**).

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

In a tubular neighborhood T(S) of a union of strata X_S , there is a quotient $V \to V^{\min}(S)$ which extends over boundary

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

In a tubular neighborhood T(S) of a union of strata X_S , there is a quotient $V \to V^{\min}(S)$ which extends over boundary

AND on the boundary, $V_S^{\min} := V^{\min}(S)|_{X_S}$ contains smallest subquotient of limit mixed Hodge structure V_S^{tr} containing M_X .

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

In a tubular neighborhood T(S) of a union of strata X_S , there is a quotient $V \to V^{\min}(S)$ which extends over boundary

AND on the boundary, $V_S^{\min} := V^{\min}(S)|_{X_S}$ contains smallest subquotient of limit mixed Hodge structure V_S^{tr} containing M_X .

$$\widetilde{T(S)}^{V^{\min}(S)} \longrightarrow \mathbb{P}V_{S,x_s}^{\min}$$
 $\widetilde{X_S}^{V_S^{\min}} \longrightarrow \mathbb{P}V_{S,x_s}^{\operatorname{tr}}$

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

In a tubular neighborhood T(S) of a union of strata X_S , there is a quotient $V \to V^{\min}(S)$ which extends over boundary

AND on the boundary, $V_S^{\min} := V^{\min}(S)|_{X_S}$ contains smallest subquotient of limit mixed Hodge structure V_S^{tr} containing M_X .

$$\widetilde{T(S)}^{V^{\min}(S)} \longrightarrow \mathbb{P}V_{S,x_s}^{\min}$$
 $\widetilde{X_S}^{V_S^{\min}} \longrightarrow \mathbb{P}V_{S,x_s}^{\operatorname{tr}}$

Key: AND $(*) + (**) \Rightarrow$ connected comp. of fibers on $\widetilde{X_S}^{V_S^{\min}}$ are **compact**.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let $Y^{\leqslant i}$ be union of codimension $\leqslant i$ strata.

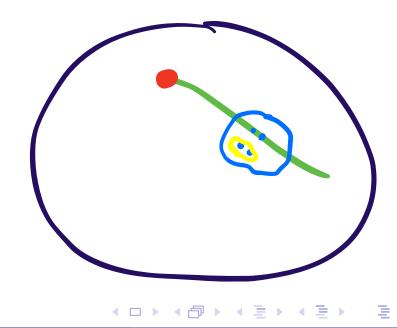
Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let $Y^{\leqslant i}$ be union of codimension $\leqslant i$ strata.

Problem. Local sections from Step 2 **DO NOT** give Y an analytic

structure.



Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let $Y^{\leqslant i}$ be union of codimension $\leqslant i$ strata.

Problem. Local sections from Step 2 **DO NOT** give Y an analytic structure.

BUT, inductively assume global sections of M_X separate fibers over $Y^{< i}$.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let $Y^{\leqslant i}$ be union of codimension $\leqslant i$ strata.

Problem. Local sections from Step 2 **DO NOT** give Y an analytic structure.

BUT, inductively assume global sections of M_X separate fibers over $Y^{< i}$.

These sections plus local sections from Step 2 **DO** imply $Y^{\leq i}$ has structure of **definable** analytic variety.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let $Y^{\leqslant i}$ be union of codimension $\leqslant i$ strata.

Problem. Local sections from Step 2 **DO NOT** give Y an analytic structure.

BUT, inductively assume global sections of M_X separate fibers over $Y^{< i}$.

These sections plus local sections from Step 2 **DO** imply $Y^{\leq i}$ has structure of **definable** analytic variety.

Definable GAGA (BBT) $\Rightarrow Y^{\leqslant i}$ is **algebraic**.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let $Y^{\leqslant i}$ be union of codimension $\leqslant i$ strata.

Problem. Local sections from Step 2 **DO NOT** give Y an analytic structure.

BUT, inductively assume global sections of M_X separate fibers over $Y^{< i}$.

These sections plus local sections from Step 2 **DO** imply $Y^{\leq i}$ has structure of **definable** analytic variety.

Definable GAGA (BBT) $\Rightarrow Y^{\leqslant i}$ is **algebraic**.

(BBT) \Rightarrow global sections of M_X separate fibers over $Y^{\leqslant i}$.

Theorem 2 (B–Filipazzi–Mauri–Tsimerman)

(X, D) proper log smooth, $(V, F^{\bullet}V)$ a polarizable $CY \mathbb{Z}$ -VHS on X° . Assume the Hodge bundle M_X is (*) integrable and (**) has torsion combinatorial monodromy. Then M_X is semiample.

Let $Y^{\leqslant i}$ be union of codimension $\leqslant i$ strata.

Problem. Local sections from Step 2 **DO NOT** give Y an analytic structure.

BUT, inductively assume global sections of M_X separate fibers over $Y^{< i}$.

These sections plus local sections from Step 2 **DO** imply $Y^{\leq i}$ has structure of **definable** analytic variety.

Definable GAGA (BBT) $\Rightarrow Y^{\leqslant i}$ is **algebraic**.

(BBT) \Rightarrow global sections of M_X separate fibers over $Y^{\leqslant i}$.QED

Thm 3: minimal lc centers

Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs. Then the Hodge bundle is integrable and has torsion combinatorial monodromy.

Thm 3: minimal lc centers

Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs. Then the Hodge bundle is integrable and has torsion combinatorial monodromy.

For a lc fibration $\pi:(Z,\Delta)\to X$, a minimal lc center dominating X (="source") carries the \mathbb{Q} -closure V^{tr} of the Hodge bundle.

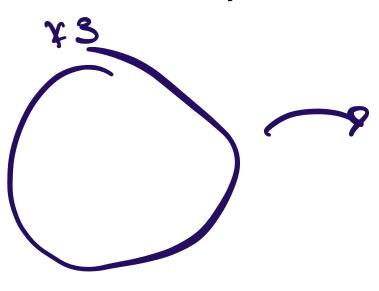
Thm 3: minimal lc centers

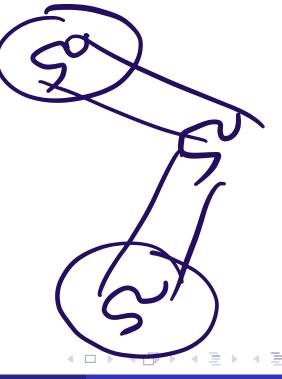
Theorem 3 (B–Filipazzi–Mauri–Tsimerman)

(X,D) proper log smooth, $(V,F^{\bullet}V)$ the polarizable $CY \mathbb{Z}$ -VHS on X° coming from the middle cohomology of a family of klt CY pairs. Then the Hodge bundle is integrable and has torsion combinatorial monodromy.

For a lc fibration $\pi:(Z,\Delta)\to X$, a minimal lc center dominating X (="source") carries the \mathbb{Q} -closure V^{tr} of the Hodge bundle.

Key. Works well in the boundary too!





Essentially a result of Ambro.

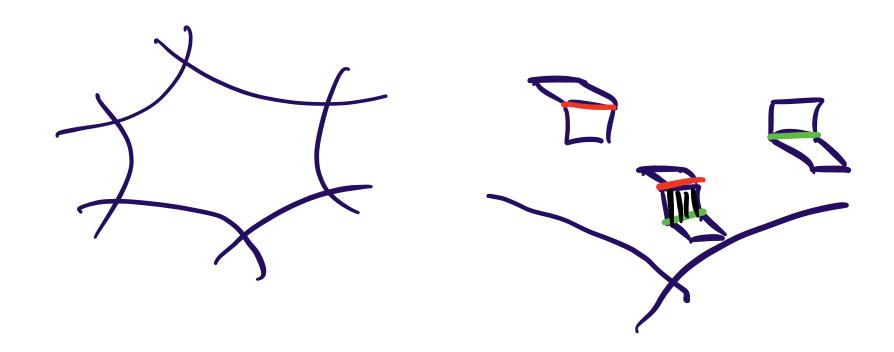
Essentially a result of Ambro.

Idea. For CY pairs, the period map of the Hodge bundle is immersive on the deformation space.

Essentially a result of Ambro.

Idea. For CY pairs, the period map of the Hodge bundle is immersive on the deformation space.

So if the Hodge bundle is trivial along a transcendental curve, the source must vary trivially, so V^{tr} is isotrivial.



Problem. Source is not unique.

Problem. Source is not unique.

BUT Kollár's \mathbb{P}^1 -linking $\Rightarrow V^{\text{tr}}$ s at node are glued via birational identification of sources $S_1 \simeq S_2$.

Problem. Source is not unique.

BUT Kollár's \mathbb{P}^1 -linking $\Rightarrow V^{\text{tr}}$ s at node are glued via birational identification of sources $S_1 \simeq S_2$.

$$\operatorname{img}\left(\operatorname{Bir}(S_1,S_2) \to \operatorname{Hom}(H^0(\omega_{S_1}),H^0(\omega_{S_2})\right) < \infty$$

Thanks!